
www.manaraa.com

b7~3
NPS CS-92-021

NAVAL POSTGRADUATE SCHOOL
Monterey, California

A VERSION AND CONFIGURATION
MODEL FOR

SOFTWARE EVOLUTION

Salah M. Badr

Luqi

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School

Monterey, California 93943

FedDocs
D 208.14/2
NPS-CS-92-021

www.manaraa.com

NAVAL POSTGRADUATE SCHOOL
Monterey, California

REAR ADMIRAL R. W. WEST JR. HARRISON SHULL
Superintendent Provost

This report was prepared for and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

www.manaraa.com

ECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY

1b. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVA I LABILITY OF REPORT

Approved for public release;

distribution is unlimited

O
I

2b. DECLASSIPICATION/DOWNgRADINg schedule

5 MONITORING ORGANIZATION REPORT NUMBER(S)4 per^ORMiNg Organization REPORT NumBER(S)

NPS CS-92-021

NAME OP PERFORMING ORGANIZATION
cience utComputer Science Dept

Naval Postgraduate School

6b OFPicE syMBol
(if applicable)

CS

7a. NAME OP MONiTORIng Organization

Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

8a. NAME OP FUNDING/SPONSORING
organization

Naval Postgraduate School

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT ID ENTIFICATION NUMBER

10 SOURCE OF FUND ING NUMBERS8c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000
PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

A VERSION AND CONFIGURATION MODEL FOR SOFTWARE EVOLUTION

12. PERSONAL AUTHOR(S)
SALAH M. BADR, LUQI

13b. TIME COVERED
from 05/89 to 03/90

15. PAGE COUNT
21

3a. TYPE OF REPORT
rechinical

14. DATE OF REPORT (Year, Month, Day)

December 1992

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

SOFTWARE EVOLUTION, VERSION CONTROL, CONFIGURATION
MANAGMENT, JOB ASSIGNMENT, DESIGN DATABASE,

19. ABSTRACT/Cont/nue on reverse if necessary and identify by block number)

This report introduces both a design database model and a version and configuration model for keeping

track of all these overwhelming numbers of software system versions and keep track of which object version belongs

to which system configuration in an automated manner transparent to the user. This gives the software development

team the chance to concentrate on what is needed to be done to fix or improve system components instead of worry-

ing about managing this enormous amount of data. This paper also shade some lights on our design management and

job assignment system (DMJAS) that uses these two models to manage both design data and development team [12].

"26. DISTRIBUTION/AVAILABILITY OF ABSTRACT

fj UNCLASSIFIED/UNLIMITED] SAME AS RPT. Q DTIC USERS
21. ABSTRACT SECURITY CLASSIFICATIi

UNCLASSIFIED
^tkAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code)

(408) 656-2903
22^pFFICE SYMBOL

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

www.manaraa.com

www.manaraa.com

A Version and Configuration Model for Software

Evolution

Salah Badr

Luqi

Naval Postgraduate School

Department of Computer Science

Monterey, California 93943 USA

ABSTRACT

With the complexity of software systems growing every day, more sophisticated develop-

ment and maintenance environments are necessary to cope with the evolutionary nature of soft-

ware systems. These systems experience iterative behavior through an endless number of versions

to cope with the customer's changing and growing needs and the changing and growing software

and hardware technology.

This report introduces both a design database model and a version and configuration control

model for keeping track of these overwhelming numbers of software system versions and keep

track of which object version belongs to which system configuration in an automated manner

which is transparent to the user. This allows the software development team to concentrate on

what is needed to be done to fix or improve system components instead of worrying about manag-

ing this enormous amount of data. This paper also sheds some lights on our design management

and job assignment system (DMJAS) that uses these two models to manage both design data and

the development team [12].

KEYWORDS: SOFTWARE EVOLUTION, VERSION CONTROL, CONFIGURATION MAN-
AGMENT, JOB ASSIGNMENT, DESIGN DATABASE, SOFTWARE ENGINEERING.

1. Introduction

In an evolving software system, the design database plays an active role in the development/

evolution process. It represents the kitchen in which all kinds of project data are cooked and kept

in different forms. The project releases are frozen in a write-protect mode, copies of the project

data under development/evolution are kept in a mutable form accessible only to the evolution

1. This research was supported in part by the Army Research Office under grant number ARO- 145-91, and in part by

the National Science Foundation under grant number CCR-9058453

www.manaraa.com

team, and history files are kept in an archival form (new versions can be added but existing ver-

sions cannot be modified after they are committed). This kitchen has to be run under a strict cook

that takes care of the coordination and management of the different activities.

Our models of version and configuration control, and design database together with our

Design Management and Job Assignment System DMJAS [12] have the following goals [7].

• Minimize the communication time between designers/programmers by keeping the develop-

ment documents on-line.

• Support planning and scheduling of proposed changes/maintenance by keeping the relationship

between different data objects, and managing changes in progress.

• Propagate change consequences to maintain the global consistency of the database.

• Produce nondisruptive status reports for an ongoing project.

• Track the development history by maintaining an up-to-date record of all design decisions and

relevant development information.

• Support software reusability to save both cost and effort.

The version control and configuration management mechanism (VCCM) as part of the

Design Management and Job Assignment System DMJAS [12] automatically takes care of object

versioning and system configurations (releases).

Our model of the design database has the features needed to support all of the above require-

ments except the last one. A separate database called the software base contains all reusable soft-

ware components and the retrieval system that finds existing components that match given

specifications [21].

An evolving system goes through successive iterations during its development to meet the

customer's real needs. It also continues to evolve during its life time to cope with customer's

changing requirements and the advances in both software and hardware systems besides the normal

maintenance activities for bug fixing and upgrading. This process of evolution is inherent to almost

each software system. If S is the intended final version of the software system, then each

successive iteration of this system can be viewed as an element of a sequence Y\ where:

lim Y- = 5. Each system iteration (version) Y: is modelled as a graph G: = (V.-, E-X where: V;

is a set of vertices. Each vertex represents an atomic object or a composite object modelled as

www.manaraa.com

another graph, and E-
x
is a set of edges. Each edge represents one of the relations "part_of ' or

"uses" between two different objects of those represented by the set of vertices V-v This

mathematical formulation is the basis of our design database data model and also the basis of our

computed labelling function described in sections 3 and 4 of this paper.

2. Previous Work

As indicated in [13], version control and configuration management is one of the fields in

software engineering that has received much discussion and many proposals for proper version

and configuration models in different domains, but little has been implemented, and much

remains to be done in developing techniques for ensuring the consistency of configurations and

space efficient algorithms for version management.

The versioning process as described in [15] is divided into two main models: the conven-

tional version oriented model VOM, and the change oriented model. Our VCCM mechanism sup-

ports change oriented versioning, where a new system configuration is generated each time we

complete a set of changes (an evolution step) and orthogonal to that a new version of each object

involved in the change is also generated. The three main aspects of organizing software objects

defined in [16], evolution, membership and composition, are similar to the underlying concepts

used by our mechanism; the difference is that we use composite objects to represent the member-

ship organization and a generalized form of the composite object to define the composition orga-

nization. This same structure represents configurations of systems and their subsystems.

Our concept of composite entities and its generalization to fit system configurations is also

similar to that used in PACT [14]. Our system uses a computed labeling function and a single ver-

sioning mechanism for automatically versioning individual objects and configuring a system (as a

composite object). Simplifying version control and configuration management and making it

transparent to the user without requiring his/her intervention are two of the main goals of a good

version control and configuration management system as set forth in [3].

www.manaraa.com

Our system takes care of planning, scheduling, status accounting and auditing of the

changes via explicit representations of steps as well as versions. Each step has a unique step num-

ber and all the relevant information such as dependent modules, affected modules, who made the

changes and when, and the current status of a step in addition to a description of the motivation

for these changes. This enables the system to answer questions similar to those mentioned in [17]

such as: what changes were made in step #X, what components were affected by this change,

what changes were made to the system after a certain date, and so on.

3. Design Database Model

The data in the design database is modeled as a graph in which the nodes represent uniquely

identified versions of objects (atomic or composite) and the arcs represent relationships between

these objects. The graph also represents the organization of the software products into separate

concerns. Software can be decomposed into vertical and horizontal structures [11].

The vertical structure forms a hierarchical structure with the design database as the root of

the hierarchy. The first level represents the different systems/prototypes included in the design

database. The second level represents the different variations of each system/prototype. Variations

represents alternative choices, which may correspond to different formulations of the require-

ments in the context of prototyping, or different kinds of underlying system software (operating

system, window manager, etc.) in the context of product releases. The third level represents the

different system versions (configurations) for each variation. A linear sequence of versions repre-

sents the evolution history of a particular variation. The fourth level represents the different mod-

ules comprising each version (source code module, specification module, requirement module,

etc.). From the fifth level on is the decomposition of each composite module to its sub-modules,

down to the leaf nodes which must be atomic. Figure 1 shows a graphic representation of the

design database hierarchy. The objects in the vertical hierarchy are linked together through the

inverse relations "part-of and "parent" between a composite object and its components.

The horizontal structure has two different views: the first represents dependencies between

entities that are part of the same release. The main relations in the first view are "uses" and "used

www.manaraa.com

Design Database

Prototype 1

Variation 1

Version 1

Sub-mod 1

Prototype 2

Variation 2

Version 2

Module 1 ModiModule 2

Sub-mod 2

Atomic-mod 1 Atomic-mod 1

1
Prototype X

Variation I

Version J

1
10

I

Module K

~l
Sub-mod L

1
Atomic-mod M

Figure 1 The Design Database Hierarchy Structure

by". The second view represents derivation relationships between different versions of the same

object via the relations "previous" and "next" to facilitate navigation through an object history.

The design database is divided into two main parts:

• Shared data space where frozen versions of software objects are stored, and

• Private workspaces where new software are developed.

3.1 Shared Data Space

The shared data space is the repository that keeps all of the verified software objects (ver-

sions or configurations) [5]. The versions in the shared data space are frozen and may not be

changed under any circumstances. Any changes to any of the objects must be done in the context

of an evolution step, authorized by the management, and completion of such a step can only add

www.manaraa.com

new versions to the shared data space. The shared data space contains the public releases of the

software objects. Mutable copies of these objects can only be obtained as part of an evolution step

controlled by the Design Management and Job Assignment system. The relations between the

objects in the database are kept as attributes of each object.

3.2 Private Workspaces

Since the data in the shared data space is frozen and may not be changed, the private work-

spaces are used for production of new versions of existing objects or adding new objects to exist-

ing software systems which in turn produce new versions of the software system.

The private workspaces contains copies of the specific versions of the software to which the

changes are to be implemented (base versions). Only the designer responsible for an evolution

step has access to a mutable copy of the base version in that designer's private workspace, and the

designer can modify those objects only via the tools provided by the Computer Aided Prototyping

System (CAPS). The process of copying objects to and from the designer's workspace is done

automatically by the Design Management and Job Assignment System DMJAS [12], and these

objects continue to be under its control until either all the changes are done and the DMJAS com-

mits them to generate the new version (when a mutable version in the design database is commit-

ted by the DMJAS, it becomes an immutable version in the shared data space), or if the changes

are suspended/abandoned then current copies of the mutable versions are appended to the log

associated with the step for future references.

4. Version and Configuration Management Mechanism

In the context of an evolving system, an object is a software component that is subject to

change; objects can be either composite or atomic. Objects can be changed only by creating new

versions. Change requests submitted by customers or suggested by system engineers trigger evo-

lution steps [8]. Applying an evolution step to a specific version of a software object produces a

new version of that software object. An evolution step may be either atomic or composite. An

atomic evolution step produces at most one new version of an atomic system component, while a

www.manaraa.com

composite evolution step produces a new version of a composite component and its substeps pro-

duce new versions of the subcomponents of the composite object [8]. In either case (atomic or

composite), every evolution step is part of a transaction that produces a new version of the entire

software system under development. A transaction consists of an evolution step that updates an

entire prototype, together with all levels of associated substeps. This structure provides account-

ability and implies that the version number of a software system is greater or equal to the version

number of any of its components.

Software evolution steps are created when changes are proposed, and become part of the on-

line representation of the work plan when they are approved. Steps become part of the work

schedule when they are bound to specific versions of their input objects which triggers their auto-

matic assignment by the DMJAS to specific designers. Figure 2 depicts the graph representation

of the relation between system versions and the corresponding evolution steps. Step S^ is applied

to version Vn of a software object (where "k" is the step number, "i" represents the variation

number and "j" represents the version number along one variation) producing version Vy+1 . Vari-

ations are represented as partial paths in the graph, applying step S^+j to Vy+1 produces the ver-

sion Vjj+2 on the same variation line. Applying step S^+2 to Vjj+ i
produces a new variation i+1

with version Vj+1 ;+2- Applying step S^+3 to Vj j produces another new variation i+2 with the ver-

sion Vi+2J+ i.

Figure 2 The relation between system versions and evolution steps

www.manaraa.com

The graph can also include dependencies between the modified versions and versions of

other objects that are not modified by the step, such as specifications of other modules. For sim-

plicity links of this type are not shown in figure 2.

Notice that, in case of a split that creates a new variation, it is the order of the steps rather

than the version number of the base version that decides the variation number (i. e., Step k+2 cre-

ated the new variation i+1 and Step k+3 created the new variation i+2 despite the fact that the first

is applied to version j+1 and the second is applied to version j). Thus the variation numbers cap-

ture the chronological order in which the variations were created. Step numbers are assigned in

increasing order when the steps are created. Steps can be carried out concurrently and asynchro-

nously, and the order in which they actually start or complete their implementation phases can dif-

fer from the order in which the steps are added to the schedule.

4.1 Version and Variation Numbering

As soon as the step number is assigned and the input base version is bound, the system

assigns the version and variation number of the output object for the step. The variations are

assigned successive numbers beginning with 1 for the initial variation. Versions along each varia-

tion are assigned successive numbers starting with 1 at the root version of the initial variation.

This means that the new version number is the base version number plus one, while the variation

number has two possibilities: the first possibility is to keep the base version's variation number at

the time the step is scheduled. This occurs when the base version is the most recent version on its

variation line at the time the step is scheduled. The other possibility is to use the "next" variation

number, which is the highest variation number plus one. This labeling function is the same for

both atomic or composite objects (the entire software system is represented as a composite

object). We formalize this labeling function as follows:

a. The ordering of version identifiers on the same variation line must be the same as the serial-

ization order of the changes that produced the corresponding versions.

predecessor (V-new) := exists (V-base) & -i exists (successor (V-base)) -»

version (V-new) := version (V-base)+ 1, variation (V-new) := variation (V-base)

www.manaraa.com

For the initial version of a newly created prototype:

—i exists (predecessor (V-new)) —> version (V-new) := 1, variation (V-new) := 1

b. Changes to versions that are not the most recent on their variation line split off a new varia-

tion line and produce an alternate version on the new variation.

predecessor (V-new)= exists (V-base) & exists (successor (V-base)) —

»

version (V-new) := version (V-base)+ 1,

variation (V-new) := Next-variation,

Next-variation := Next-variation + 1

where Next-variation is a global variable for each object graph that holds the number of the

next variation to be created in this graph, and initially has the value 2.

In the case of a merge of two variations:

a. If both the base versions are the most recent on their variation lines, then the new version

number is the greater version number of the base versions plus one. The new variation number

is the variation number of the one that has the greater base version number of the merging vari-

ations (to keep it a unique number).

{ V-base 1, V-base2} £ predecessor (V-new) & — exists (successor (V-base 1)) &

—i exists (successor (V-base2)) —

>

version (V-new) := max (version (V-base 1), version (V-base2))+ 1,

variation (V-new) := variation (max (version (V-base 1), version (V-base2)))

b. If only one of the merging versions is the most recent on its variation line, then the result of

the merge version is the next version on this same line.

{ V-base 1, V-base2} £ predecessors (V-new) & —> exists (successor (V-base 1)) &

exists (successor (V-base2)) —

»

version (V-new) := version (V-base 1)+ 1,

variation (V-new) := variation (V-base 1)

www.manaraa.com

c. If both the base versions are not the most recent versions on their variation lines, then the

new variation number is the "next" variation number and the version number is the version

number of the version of the first base version plus one.

{V-basel, V-base2} £ predecessor (V-new) & exists (successor (V-basel)) &

exists (successor (V-base2)) —» version (V-new) := version (V-basel) + 1,

variation (V-new) :=Next-variation,

Next-variation := Next-variation + 1

This labeling function allows a version to belong to more than one variation which is a neces-

sary modification to [8] to simplify the process of tracing the development history of a version

and to keep a logical and realistic development history.

4.2 Configuration Control Model

As mentioned in section 3 above, the configurations of the different software systems/proto-

types are represented by a hierarchical structure according to the levels of the decomposition of

each system. This hierarchical structure is a directed acyclic graph in our case with its nodes rep-

resenting the different components of the system and the edges representing the relations among

these components which are "part-of ' and "uses". An example of a system is given in section 5 to

clarify this configuration graph. An evolution step producing new versions of some of the system

components eventually leads to producing a new version of the whole system. This is done by

propagating the version numbering recursively from the leaf nodes to their parents and all the way

up to the root of the tree which represents the system under evolution. This is formalized as fol-

lows:

For i= N to 2

exists (new-version (component (i))) & component (i) part_of component (i-1) &

-i exists (new-version (component (i-1)) -> new-version (component (i-1))

Where N is number of levels in the configuration graph in which the root is level number 1

.

10

www.manaraa.com

4.3 Committing Evolution Steps

An evolution step can only be committed if all its sub-steps and induced steps are committed

[8]. This means that the transition to the "commit" state of a top level evolution step is triggered

by the commitment of the last substep in its decomposition. Since the Design Management and

Job Assignment System is automatically generating both the primary and induced substeps of a

composite step, assigning them, adding and deleting input objects for steps in progress, process-

ing the commit command for each substep, then it has the complete knowledge required to trigger

the commitment of the top level evolution step. Committing the individual steps is done by copy-

ing their output components to the shared data space of the frozen versions and making these ver-

sions visible only to those designers who are assigned steps that use those objects as secondary

input objects, while committing the top level evolution step is done by making these new frozen

versions visible for public use.

An overview of how the steps are assigned to the members of the design team may clarify

the order of committing those steps. The Design Management and Job Assignment System ana-

lyzes the primary inputs of the top level evolution steps, finds the induced changes needed to

propagate the required changes of the primary inputs, then it creates a hierarchy of steps accord-

ing to the relations "part_of ' and "uses" between the primary and induced inputs. A step can only

be assigned if all those steps it depends on are committed, which guarantees the consistency of the

software system via propagating the changes and minimizing rollbacks.

4.3.1 Committing Atomic Steps

As defined above an atomic evolution step produces at most one new version of an atomic

system component. The output of an atomic step is either a new version of its input object or an

initial version of a new object to be added to the system. In either case this object is configured

using the labeling function defined in section 4.1, and copied to the shared data space as frozen

version. This new frozen version is made visible only to the members of the design team who may

use it as a secondary input to their assigned steps. This new version is also mapped to the new

configuration graph replacing its previous version or creating a new node in the graph if it is an

n

www.manaraa.com

initial version of a newly added object. Committing an atomic step also releases all the depen-

dency links between this step and those steps that use this step.

commit_step(s: step_id)

WHEN s IN current_step.id

Commit (s) = Configure (s.output), copy(s.output, shared_data_space)

OTHERWISE REPLY EXCEPTION no_such_substep

4.3.2 Committing Composite Steps

Having the hierarchical structure of both the developed system and the top level evolution

steps (the transaction that consists of an evolution step that updates an entire prototype/system) in

mind facilitates the understanding of how the commitment of a composite evolution step takes

place. First the output of the composite step is copied back to the shared data space, configured,

then the "part_of ' links between this component and its parts are updated especially for those

components that have new versions created as an output of the substeps of this composite step.

Going all the way up the hierarchy, the last composite step is the top level step which indicates

that all the steps have been committed and that it is time to release the resulting system for public

use. For this reason the top level step has something more than each composite step. It completes

the configuration graph by updating the "previous" and "next" links for each object in its horizon-

tal graph. This means that the newly created version is connected to its base version for history

tracing. Finally, it makes the new version of the software system visible to the user world as a new

system release.

5. A Version Control and Configuration Management Example

Assume we have a system Sys as in figure 3 below that consists of three main modules Ma,

Mb and Mc. Ma consists of two objects Oa, Ob and Mb is atomic while Mc consists of Oc, Od,

and Oe. As shown in figure 3 below, each component has a specification module and an imple-

mentation module. The composite components have two extra modules: the graph module and the

postscript module (which is not shown in the graph for simplicity). The relations "used-by" and

"part-of
' in figure 3 are defined as follows: a thin arrow from A to B means that A used_by B,

12

www.manaraa.com

Sys.1.1

Sys.spec.l.

Ma.1.1 Mc. 1.1

K
Ma.spec. 1.1

Mj,imp, 1,1

Oa.

c
^

Oa.spec.1.1

Oa.imp.1.1

Oe.1.1

Ob.imp.l.l

Oe.spec.1.1

Oe.imp.1.1

partof & Usedby
usedby

Figure 3 A given system version 1.

while a thick arrow from A to B means A part_of B & A used_by B. This means Ma part-of Sys,

Mb part-of Sys, Mc part_of Sys, Oa part-of Ma, Ob part-of Ma, Oc part-of Mc, Od part-of Mc, Oe

part-of Mc. The "part-of relation also implies a "used_by" relationship between the specification

modules of the children components and the implementation module of their parent components.

The used_by relation is defined as follows: Oc used_by Oe, and every specification module of a

component is used_by its implementation module such as S.spec used_by S.imp, Ma.spec

used_by Ma.imp, etc.

1. Let us assume that three evolution steps are created by the designers. The first Step is SI

with primary input Ma.spec, no secondary inputs, base version is Sys.1.1. The second step is S2

with primary input Mb.imp, secondary input Mb.spec, and base version is Sys.1.1. The third step

is S3 with primary input Oc.spec, no secondary input, base version is Sys. The system will assign

a unique number to each of the created steps and the steps status are initialized to "proposed".

13

www.manaraa.com

2. The manager reviews the proposed steps, adds any management constraints such as prior-

ity, precedence, estimated time for completing the step, and deadline. The manager can also mod-

ify any of the inputs to the step through the commands add_input or delete_input. When the

manager approves the step, its status is changed from proposed to "approved".

3. Changing the step status to "approved" triggers the analysis process that analyzes the

relations between the primary inputs and the rest of the system components, determines the

induced changes that have to be made to propagate the required changes, then builds the depen-

dency graph between both the primary and induced inputs (those modules that use the output of

the step which can be approximated by those modules that uses the input of the step). The analysis

process is done as follows:

a. The system will examine the primary input modules with respect to "used_by" relation-

ship to find out what other modules have to be changed to reflect and propagate the required

changes (induced changes). By examining the primary input to step 1 the system should find out

that the only modules that use Ma.spec are {Ma.imp, Sys.imp). The same analysis is done for

steps two and three. The resulting two induced sets are { } and {Mc.imp, Oc.imp, Oe.imp}.

S3.2
Mc.imp.l.l

usedby

Figure 4 The dependency graph

b. The dependency graph between each step's primary input and its induced inputs is built as

shown in figure 4, and a copy is sent to the manager for validation. This dependency graph is an

14

www.manaraa.com

acyclic graph used for scheduling estimation and also used by the job assignment mechanism for

concurrent assignment.

Sys.1.2

Sys.spec.l.

Ma.1.2 Mc. 1.1

k
Ma. spec. 1.2

Ma.imp.1.2

Oa.

c

&
Oa.spec.l.l

Oa. imp. 1.1

Oe.1.1

Ob.imp.l.l

Oe.spec.1.1

Oe.imp.1.1

part_of & Used_by
usedjby

Figure 5 Version 2 of the given system.

4. After reviewing the dependency graph the manager either decides to edit it [add/delete

edges or nodes] or to schedule the steps. When the manager decides to schedule the steps, the

scheduling and job assignment mechanisms is triggered. The scheduling mechanism works as fol-

lows:

a. A substep of the parent top level step is created for each component in the dependency

graph. This means steps Sl.l, SI.2, and S1.3 are created with the primary inputs Ma.spec.1.1,

Sys.imp.1.1, and Ma.imp.1.1 respectively; step S2.1 is created with the primary inputs

Mb.imp. 1.1; steps S3.1, S3.2, S3. 3, and S3.4 with primary inputs Oc.spec.1.1, Mc.imp.1.1,

Oc.imp. 1.1 and Oe.imp.1.1 respectively. Induced steps inherit the version bindings of their induc-

ing steps as well as their precedence, priority, and deadline if any exist.

15

www.manaraa.com

Sys.1.3

Sys.spec.l.

Ma.1.2 Mc. 1.1

<
Ma.spec. 1.2

Ma.imp.1.2

13
Oa.spec.l.l

Oa.imp.1.1

Oe.1.1

Ob.imp.l.l

Oe.spec.1.1

Oe.imp.1.1

partof & Usedjby
used_by

Figure 6 Version 3 of the given system.

b. The DMJAS performs the serialization and assignment of the different steps to the avail-

able designers. The serialization and assignment policies as well as the scheduling and assignment

mechanisms are explained in [12]. Let us assume that the serialization of the three steps is SI, S2,

and S3. This means that the commitment order of the three steps is in the same order, i.e., SI pro-

duces version 2 of the system on variation 1, S2 produces version 3 of the system, and S3 pro-

duces version 4 of the system on the same variation

5. Now committing SI means that its three substeps are committed, Sl.l producing

Ma.spec.1.2, S 1.2 producing Sys.imp.1.2, and SI. 3 producing Ma.imp.1.2. This produces the new

version Ma.1.2 of the composite component Ma. The new version of Ma and the new version of

Sys.imp are also automatically propagated to produce the new version Sys.1.2 of the whole sys-

tem as shown in figure 5. This changes the base version binding for step 2 to be Sys.1.2.

16

www.manaraa.com

Sys.1.4

Sys.spec.l.

K

Ma.1.2

Ma.spec. 1.2

Mc. 1.2

Ma.imp.1.2

Oa.

c
2?

Oa.spec.1.1

Oa.imp.1.1

Oe.1.2

Oe.spec.l.l

Oe.imp.1.2

partof & Usedby
usedby

Figure 7 Version 4 or the given system.

6. Committing S2 means that its substep S2.1 is committed producing Mb.imp.1.2. This pro-

duces the new version Mb. 1.2 of the component Mb. This is automatically propagated to produce

the new version Sys.1.3 of the whole system as indicated in figure 6, and change the base version

binding for step 2 to be Sys.1.3.

7. Committing S3 means that its four substeps are committed, S3.1 producing Oc. spec. 1.2,

S3.3 producing Oc.imp.1.2, which automatically produces the new version Ocl.2 of the object

Oc; S3.4 producing Oe.imp.1.2 which automatically produces the new version Oel.2 of the object

Oe; and S3.2 producing Mc.imp.1.2. This automatically produces the new version Mc.1.2 of the

composite component Mc. The new version of Mc is automatically propagated to produce the

new system version Sys.1.4 of the whole system as shown in figure 7.

8. If we assume that another step S4 with a primary input Oa.imp.1.1, with the base version

Sys.1.4, then committing this step produces the new version Oa.imp.1.2 and the new version

17

www.manaraa.com

Sys.1.5

Sys.spec.l

K

Ma.1.3

Ma.spec.1.2

Mc. 1.2

Ma.imp.1.2

Oa.

c

1.2^
zzz:

Oa.spec.1.1

Oa.imp.1.2

Oe.1.2

Ob.imp.l.l

Oe.spec.1.1

Oe.imp.1.2

part_of & Usedjby
used_by

Figure 8 The given system version 5.

Oa.1.2 of the object Oa. This is automatically propagated to produce the new version Ma.1.3 of

the composite component Ma and the new version Sys.1.5 of the whole system (as a composite

component) as shown in figure 8 below.

9. Now we introduce another step S5 with a primary input Mb.spec.l. 1 with the base version

Sys.1.4. This step will have three substeps: S5.1 with primary input Mb.spec.1.1 and two induced

steps S5.2 with primary input Mb.imp.1.2 and S5.3 with primary input Sys.imp.1.2. Committing

this step means that its three substeps are committed, S5.1 produces the new version Mb.spec.1.2,

S5.2 produces the new version Mb.imp. 1.3, and S5.3 produces the new version Sys.imp.1.3. Now

S5.1 and S5.2 lead to producing a new version of the component Mb which is Mb. 1.3. To propa-

gate this versioning process to the top component of the system Sys.1.4 we notice that its not the

most recent version any more, which leads to producing the new variation of the system Sys.2.5

as shown in figure 9.

18

www.manaraa.com

Sys.2.5

Sys.spec.l.

fa

Ma.1.2

Ma.spec.1.2

Mc. 1.2

Ma,imp, 1,2

Oa.

c
5e

Oa.spec.l.l

Oa.imp.1.1

Oe.1.2

Oe.spec.l.l

Oe.imp.1.2

partof & Usedby
^ usedby

Figure 9 Variation 2 Version 5 of the given system.

6. Conclusion

In this paper we have presented the design database model with its vertical and horizontal

graph structures, and the version control and configuration management model and mechanism

that simplifies version control and configuration management activities. This mechanism is part of

the DMJAS [12] that manages the change process from the moment the primary input of the top

level evolution step is entered into the system to committing these changes which produces a new

system configuration. The goal of this system is determination of serialization ordering between

different steps as well as automation of the assignment of evolution steps to designers. Work on

automated support for merging split variation lines is in progress. [18] [19] [20].

19

www.manaraa.com

LIST OF REFERENCES

[1] Berzins and Luqi, "Software Engineering with Abstractions", Addison-Wesley 1990

[2] Borison E., "A Model of Software Manufacture", in Advanced Programming

Environment, Springer-Verlag, 1986, pp. 197-220.

[3] Feldman S. I., "Software Configuration management: Past Uses and Future

Challenges" Proceedings of 3rd European Software Engineering Conference, ESEC
'91, Milan, Italy, October 1991

[4] Heimbigner D. and Krane S., "A graph Transform Model for Configuration

Management Environments", Proceedings of the ACM SIGSOFT/SIGPLAN, Nov.

28-30, 1988.

[5] "IEEE Guide to Software Configuration Management", Std 1042-1987, American

National Standards Institute/IEEE, New York, 1988.

[6] Ketabchi M. A., "On the Management of Computer Aided Design Database", Ph. D.

Dissertation, University of Minnesota, Nov. 1985.

[7] Luqi, "Software Evolution Through Rapid Prototyping", IEEE Computer Vol. 22,

NO. 5. May 1989, pp 13-25.

[8] Luqi, "A Graph Model for Software Evolution", IEEE Transaction on Software

Engineering. Vol. 16. NO. 8. Aug. 1990

[9] Mostov I., Luqi, and Hefner K., "A Graph Model for Software Maintenance", Tech.

Rep. NPS52-90-014, Computer Science Department, Naval Postgraduate School,

Aug. 1989.

[10] Narayanaswamy K. and Scacchi W., "Maintaining Configuration of Evolving

Software System", IEEE Trans, on Software Eng. SE-13,3. Mar. 1987, pp. 324-334.

[11] Campbell R. H., Terwilliger R. B. "The SAGA Approach to Automated Project

Management", in Advanced Programming Environment, Springer-Verlag, 1986, pp.

142-155.

[12] Badr S. and Berzins V, "A Design Management and Job Assignment System",

Technical Report, NPS CS-92-20

[13] Silberschatz A., Stonebraker M., and Ullman J., "Database Systems: Achievements

and Opportunities", Communication of the ACM, October 199 1/Vol. 34, No. 10, pp.

110-120.

20

www.manaraa.com

[15] Lie A. et al, "Change Oriented Versioning in a Software Engineering Database",

Proceedings of 2nd International Workshop on Software Configuration

Management, Princeton, New Jersey, Oct. 24,1989. pp. 56-65.

[16] Gustavsson A., "Maintaining the Evolution of Software Objects in an integrated

Environment", Proceedings of 2nd International Workshop on Software

Configuration Management, Princeton, New Jersey, Oct. 24,1989. pp. 114-117.

[17] Lobba A., "Automated Configuration Management", Proceedings of IEEE
conference on Software Tools 1987. pp. 100-103.

[18] Dampier D., "A Model for Merging Different Versions of a PSDL Program", MS
thesis, Computer Science, Naval Postgraduate School, June 1990.

[19] Dampier D., Luqi, "A Model for Merging Software Prototypes", Technical Report,

NPS CS-92-014.

[20] Berzins V. "Software Merge: Models and Methods for Combining Changes to

Programs", Journal of Systems Integration, vol. 1, no. 2, August 1991, pp. 121-141.

[21] Steigerwald, R. A., "Reusable Software Component Retrieval Using Normalized

Algebraic Axioms", PhD dissertation, Naval Postgraduate School, Monterey, CA,
December, 1991.

21

www.manaraa.com

www.manaraa.com

DISTRIBUTION LIST

Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22314

Director of Research Administration, Code 08 1

Naval Postgraduate School

Monterey, CA 93943

Library, Code 52 2

Naval Postgraduate School

Monterey, CA 93943

Egyptian Military Attache 2

2308 Tracy Place NW
Washington, DC 20008

Egyptian Armament Authority - Training Department 2

c/o American Embassy (Cairo, Egypt)

Office of Military Cooperation

Box 29 (TNG)
FPO, NY 09527-0051

Military Technical College (Egypt) 5

c/o American Embassy (Cairo, Egypt)

Office of Military Cooperation

Box 29 (TNG)
FPO, NY 09527-0051

Military Research Center (Egypt) 5

c/o American Embassy (Cairo, Egypt)

Office of Military Cooperation

Box 29 (TNG)
FPO, NY 09527-0051

LTC. Salah M. Badr 10

Computer Science Department, Code CS
Naval Postgraduate School

Monterey, CA 93943

Dr. Luqi 10

Computer Science Department, Code CS
Naval Postgraduate School

Monterey, CA 93943

22

www.manaraa.com

Dr. Valdis Berzins

Computer Science Department, Code CS
Naval Postgraduate School

Monterey, CA 93943

Dr. Mantak Shing

Computer Science Department, Code CS
Naval Postgraduate School

Monterey, CA 93943

Michael L. Nelson, Maj. USAF
HQUSCINCPAC/J66
Box 32A
Camp H. M. Smith, HI 96861

Dr.Tarek Abdel-Hamid

Administrative Science Department, Code AS
Naval Postgraduate School

Monterey, CA 93943

Dr. J. T. Butler

Electrical and Computer Engineering Department, Code EC
Naval Postgraduate School

Monterey, CA 93943

23

www.manaraa.com

www.manaraa.com

DUDLEY KNOX LIBRARY

3 2768 00332735 4

